32 research outputs found

    The Vadalog System: Datalog-based Reasoning for Knowledge Graphs

    Full text link
    Over the past years, there has been a resurgence of Datalog-based systems in the database community as well as in industry. In this context, it has been recognized that to handle the complex knowl\-edge-based scenarios encountered today, such as reasoning over large knowledge graphs, Datalog has to be extended with features such as existential quantification. Yet, Datalog-based reasoning in the presence of existential quantification is in general undecidable. Many efforts have been made to define decidable fragments. Warded Datalog+/- is a very promising one, as it captures PTIME complexity while allowing ontological reasoning. Yet so far, no implementation of Warded Datalog+/- was available. In this paper we present the Vadalog system, a Datalog-based system for performing complex logic reasoning tasks, such as those required in advanced knowledge graphs. The Vadalog system is Oxford's contribution to the VADA research programme, a joint effort of the universities of Oxford, Manchester and Edinburgh and around 20 industrial partners. As the main contribution of this paper, we illustrate the first implementation of Warded Datalog+/-, a high-performance Datalog+/- system utilizing an aggressive termination control strategy. We also provide a comprehensive experimental evaluation.Comment: Extended version of VLDB paper <https://doi.org/10.14778/3213880.3213888

    Temporal datalog with existential quantification

    Get PDF
    Existential rules, also known as tuple-generating dependencies (TGDs) or Datalog± rules, are heavily studied in the communities of Knowledge Representation and Reasoning, Semantic Web, and Databases, due to their rich modelling capabilities. In this paper we consider TGDs in the temporal setting, by introducing and studying DatalogMTL∃—an extension of metric temporal Datalog (DatalogMTL) obtained by allowing for existential rules in programs. We show that DatalogMTL∃ is undecidable even in the restricted cases of guarded and weakly-acyclic programs. To address this issue we introduce uniform semantics which, on the one hand, is well-suited for modelling temporal knowledge as it prevents from unintended value invention and, on the other hand, provides decidability of reasoning; in particular, it becomes 2-ExpSpace-complete for weakly-acyclic programs but remains undecidable for guarded programs. We provide an implementation for the decidable case and demonstrate its practical feasibility. Thus we obtain an expressive, yet decidable, rule-language and a system which is suitable for complex temporal reasoning with existential rules

    Cendrarsiana

    Get PDF
    Schema mappings have been extensively studied in the context of data exchange and data integration, where they have turned out to be the right level of abstraction for formalizing data interoperability tasks. Up to now and for the most part, schema mappings have been studied as static objects, in the sense that each time the focus has been on a single schema mapping of interest or, in the case of composition, on a pair of schema mappings of interest. In this paper, we adopt a dynamic viewpoint and embark on a study of sequences of schema mappings and of the limiting behavior of such sequences. To this effect, we first introduce a natural notion of distance on sets of finite target instances that expresses how "Close" two sets of target instances are as regards the certain answers of conjunctive queries on these sets. Using this notion of distance, we investigate pointwise limits and uniform limits of sequences of schema mappings, as well as the companion notions of pointwise Cauchy and uniformly Cauchy sequences of schema mappings. We obtain a number of results about the limits of sequences of GAV schema mappings and the limits of sequences of LAV schema mappings that reveal striking differences between these two classes of schema mappings. We also consider the completion of the metric space of sets of target instances and obtain concrete representations of limits of sequences of schema mappings in terms of generalized schema mappings, that is, schema mappings with infinite target instances as solutions to (finite) source instances

    The Space-Efficient Core of Vadalog

    Get PDF
    Vadalog is a system for performing complex reasoning tasks such as those required in advanced knowledge graphs. The logical core of the underlying Vadalog language is the warded fragment of tuple-generating dependencies (TGDs). This formalism ensures tractable reasoning in data complexity, while a recent analysis focusing on a practical implementation led to the reasoning algorithm around which the Vadalog system is built. A fundamental question that has emerged in the context of Vadalog is the following: can we limit the recursion allowed by wardedness in order to obtain a formalism that provides a convenient syntax for expressing useful recursive statements, and at the same time achieves space-efficiency? After analyzing several real-life examples of warded sets of TGDs provided by our industrial partners, as well as recent benchmarks, we observed that recursion is often used in a restricted way: the body of a TGD contains at most one atom whose predicate is mutually recursive with a predicate in the head. We show that this type of recursion, known as piece-wise linear in the Datalog literature, is the answer to our main question. We further show that piece-wise linear recursion alone, without the wardedness condition, is not enough as it leads to the undecidability of reasoning. We finally study the relative expressiveness of the query languages based on (piece-wise linear) warded sets of TGDs

    Enhancing the Updatability of Projective Views

    Get PDF
    Updating a database by means of a set of views is a classical problem in database research, known as the view update problem. It consists in “pushing back ” the changes introduced into view relations by an update to the underlying database relations over which the view relations are defined. In very recent years, the vie

    Swift Logic for Big Data and Knowledge Graphs

    Get PDF
    Many modern companies wish to maintain knowledge in the form of a corporate knowledge graph and to use and manage this knowledge via a knowledge graph management system (KGMS). We formulate various requirements for a fully-fledged KGMS. In particular, such a system must be capable of performing complex reasoning tasks but, at the same time, achieve efficient and scalable reasoning over Big Data with an acceptable computational complexity. Moreover, a KGMS needs interfaces to corporate databases, the web, and machinelearning and analytics packages. We present KRR formalisms and a system achieving these goals
    corecore